Journal Articles:
- Guarnido-Lopez, P., Pi, Y., Tao, J., Mendes, E. D. M., & Tedeschi, L. O. (2024). Computer vision algorithms to help decision-making in cattle production. Animal Frontiers, 14(6), 11-22. https://doi.org/10.1093/af/vfae028
- Pi, Y., Duffield, N., Behzadan, A., & Lomax, T. (2023). Lane-specific speed analysis in urban work zones with computer vision. Traffic injury prevention, 24(3), 242-250. https://doi.org/10.1080/15389588.2023.2173522
Example Footage under CCBY
- Pi, Y., Ye, X., Duffield, N., & Microsoft AI for Humanitarian Action Group. (2022). Rapid damage estimation of Texas Winter Storm Uri from social media using deep neural networks. Urban Science, 6(3), 62. https://doi.org/10.3390/urbansci6030062

- Pi, Y., Duffield, N., Behzadan, A. H., & Lomax, T. (2022). Visual recognition for urban traffic data retrieval and analysis in major events using convolutional neural networks. Computational urban science, 2(1), 2. https://doi.org/10.1007/s43762-021-00031-w
- Pi, Y., Nath, N. D., Sampathkumar, S., & Behzadan, A. H. (2021). Deep Learning for Visual Analytics of the Spread of COVID-19 Infection in Crowded Urban Environments. Natural Hazards Review, 22(3), 04021019. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000492
- Pi, Y., Nath, N. D., & Behzadan, A. H. (2021). Detection and Semantic Segmentation of Disaster Damage in UAV Footage. Journal of Computing in Civil Engineering, 35(2), 04020063. http://dx.doi.org/10.1061/(asce)cp.1943-5487.0000947
- Pi Y., Nath, N. D., & Behzadan, A. H. (2020). Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, 101009. https://doi.org/10.1016/j.aei.2019.101009
Conference Proceedings:
- Kaniyamattam, K., Adekule, A., Vettil, V. K., Rejimon, S. P., Pi, Y., Tao, J., … & Tedeschi, L. O. (2025). 400 Design and development of artificial intelligence driven decision support systems for sustainable livestock systems in United States. Journal of Animal Science, 103(Supplement_3), 109-110. https://doi.org/10.1093/jas/skaf300.136
- Vysyaraju, U. S. R., Moon, S., Mendes, E. D. M., Adekunle, A. J., Kaniyamattam, K., & Pi, Y. (2025). 47. Activity recognition in beef cattle Calan gate using CLIP and YOLO v11. Animal-Science proceedings, 16(4), 578-579. https://doi.org/10.1016/j.anscip.2025.08.202
- Mendes, E. D., Wooley, J., Pi, Y., Tao, J., & Tedeschi, L. O. (2024). 419 Automated individual animal identification and feeding bunk scoring: a computer vision approach for beef cattle at Calan gate feeding system. Journal of Animal Science, 102(Supplement_3), 2-3. https://doi.org/10.1093/jas/skae234.002
- Cheng, C. S., Pi, Y., Lomax, T., Duffield, N., & Behzadan, A. H. (2024). Pedestrian Phone-Related Distracted Behavior Classification in Front-Facing Vehicle Cameras for Road User Safety. In Computing in Civil Engineering 2023 (pp. 418-425). https://doi.org/10.1061/9780784485248.050
- Mendes, E. D., Pi, Y., Tao, J., & Tedeschi, L. O. (2023). 110 Evaluation of Computer Vision to Analyze Beef Cattle Feeding Behavior. Journal of Animal Science, 101(Supplement_3), 2-3. https://doi.org/10.1093/jas/skad281.003
- Tao, J., Mendes, E. D., Pi, Y., Cassity, A., Male, R. R., Kaniyamattam, K., Duffield, N. and Tedeschi, L.O. (2023). 6 Hands-On Iii: Building Digital Twins for Precision Livestock Farming: Data Analytics and Big Data Challenges. Journal of Animal Science, 101(Supplement_3), 75-76. https://doi.org/10.1093/jas/skad281.092
- Pi Y., Duffield N., Behzadan A., Lomax T. (2021), Computer Vision and Multi-object Tracking for Traffic Measurement from Campus Monitoring Cameras, I3CE conference, Orlando, FL. https://ascelibrary.org/doi/10.1061/9780784483893.117
- Pi Y., Nath N.D., Behzadan A.H. (2020), Deep Neural Networks for Drone View Localization and Mapping in GPS-Denied Environment, 18th International Conference on Computing in Civil and Building Engineering (ICCCBE), São Paulo, Brazil. http://dx.doi.org/10.46421/2706-6568.37.2020.paper001
- Pi Y., Nath N.D., Behzadan A.H. (2020), Disaster Impact Information Retrieval Using Deep Learning Object Detection in Crowdsourced Drone Footage, 27th International Workshop on Intelligent Computing in Engineering (EG-ICE), Berlin, Germany. http://dx.doi.org/10.14279/depositonce-9977
- Canadinc S., Wang B., Pi Y., Yan W. (2020), Multi-User and Web-based Parametric Modeling with Multiple Visual Programming Tools, Education and research in Computer Aided Architectural Design in Europe (eCAADe), Berlin, Germany. http://papers.cumincad.org/data/works/att/ecaade2020_032.pdf